
-- p

NASA-CR-2035_3

Parallel Processing in a
Computationally-Intensive Workload

Robert J. Bergeron I

Report RND-91-007, October 1991

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

Parallel Processing in a

ComputationaUy-Intensive Workload

Robert J. Bergeron 1

Report RND-91-007, October 1991

RND Branch

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035

t"4

Parallel Processing in a Computationally-Intensive Workload

Robert J. Bergeron

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035, USA

Abstract

This paper presents Cray Y-MP performance results for a computationally

intensive workload employing autotasking. The results indicate the 6.0

release of the Cray UNICOS operating system improves the efficiency of

autotasked programs. This release reduced parallel processing overhead by

reducing the time spent waiting by slave processes for parallel work.

System throughput increased significantly and the scheduling parameters

strongly influenced the magnitude of the increase.

1.0 Introduction

Recent emphasis on parallel processing to achieve improved MIMD

(Multiple Instruction Multiple Data) supercomputer performance has

required adjustments in operating systems to allow parallel processes to

share data. Efficient performance of workloads containing parallel jobs

seems to require more modification to ensure that parallelism does indeed

deliver its promised performance gains. Performance improvements in

workload environments occur when the operating system efficiently

distributes idle CPUs to processes requesting multiple CPUs.

Version 6.0 of the Cray UNICOS operating system claims a significant

throughput improvement for workloads executing multiple CPU

programs. Factors contributing to the improvement include processor

synchronization performed by a software semaphore and processor

scheduling performed by an enlightened kernel. This paper reports on

performance improvements of UNICOS 6.0 relative to UNICOS 5.1 on

heterogeneous workloads characteristic of the Numerical Aerodynamic
Simulation (NAS) Y-MP. The remainder of this section describes sources

of workload idle time, methods of exploiting such idle, and the factors

affecting throughput of parallel jobs in versions 5.1 and 6.0 of the UNICOS

operating system.

4

1.1Sources of Workload Idle Time

During the course of executing its component jobs, any workload

executing in a multiprogramming environment on a multiple-CPU

machine will experience a period during which its CPUs will be unable to

perform useful work. Such idle time arises for several reasons:

• a user's I/O operation idles a CPU until the data transfer completes;

• swapping of user jobs by the operating system idles the CPU;

• there are insufficient jobs in the system to keep the CPUs busy;

• the jobs attempting execution oversubscribe memory;
• a critical I/O resource such as the SSD is reserved.

1.2 Methods for Reducing Workload Idle Time

The tuning of specific operating system parameters can control idle time

by scheduling the most critical resources and by directing users away from

scarce resources. The treatment of any residual idle time is an

administrative issue. To transform idle cycles into useful work, one site

may choose low priority jobs as "cycle suckers", whereas another site may

choose parallel processing.

Low priority jobs will attempt to begin execution whenever the idle

exceeds some limiting condition. These jobs may be unable to execute if

oversubscribed memory is the cause of the high idle. Implementation of a

queue to meter the low priority jobs by memory may increase the potential
for idle reduction.

Cray's implementation of parallel processing exploits periods of residual

idle by permitting idle CPUs to assist in the execution of FORTRAN DO

loops. Such loop-level parallel processing requires compiler directives.

Autotasking is the automatic insertion of these directives by a

preprocessor; microtasking is the insertion of equivalent loop-level

directives by the user (Cray, 1988). Autotasking and/or microtasking can

improve workload throughput by converting idle CPU cycles into cycles

performing useful work. The parallel job consists of a master process

which executes throughout the job and slave processes which execute

according to the demands of the master and constraints of the operating

system.

The parallel job demands special attention from the operating system in

the areas of process synchronization and process deadlock (Reinhardt,

1985). Synchronization of the CPUs, i.e., the proper scheduling of the

arithmetic operations performed by the master and slave tasks, typically

involves logical conditions or locks to prevent additional calculation until

a condition is fulfilled. The Cray architecture provides shared registers for

inter-CPU transmittal of the status of arithmetic operations. The operating

system must support the inactive slave tasks, either by allowing them to

sleep or by keeping them connected to their CPUs.

Process deadlock occurs when a process is waiting for a condition that

will never occur. For example, slave processes executing DO loop

iterations always wait at the synchronization point, i. e., the bottom of a

DO loop, until the master task signals that the DO loop iterations are

complete. If the operating system preempts the CPU executing the master

task, the slave processes must wait until the master task unlocks the lock.

If the preempted CPU remains busy with other work, the operating system
will disconnect all slave CPUs and the calculation will have to be restarted

from the point at which the master was interrupted. The operating system

must provide deadlock detection and interruption. A workload

environment with many high priority tasks interrupting the parallel jobs

may display large numbers of deadlock interrupts.

Versions 5.0 and 5.1 of UNICOS displayed large overheads and

unpredictable speedups for autotasked jobs executing in a workload

(Carter, 1990). These drawbacks encouraged NAS to choose low priority

jobs to reduce residual idle.

1.3 UNICOS 5.1 Autotasking

Problems associated with 5.1 autotasking in a workload environment

involve both the synchronization and the scheduling of the slave

processes onto CPUs.

UNICOS 5.1 employs a hardware semaphore as the test condition for

synchronizing the CPUs. The 5.1 implementation provides fast access to

shared resources, allowing efficient processing even for small-granularity

tasks. However, this approach keeps the user-requested processors

executing the semaphore wait test during periods of singletasked activity.

A workload environment containing many processes will display a

performance degradation when CPUs are performing semaphore tests
instead of useful work.

A limited information flow between the 5.1 kernel and the autotasked

processes belonging to a single job prevented efficient scheduling.

Deadlock delays occurred when the operating system interrupted one of

the CPUs executing an autotasked process. These delays arose because the

UNICOS kernel forced sibling autotasked processes to wait until the CPU

interrupted by the kernel became available for completing its suspended

task. Such inefficient use of the CPUs contributed to poor performance in

workloads.

6

1.4UNICOS 6.0Autotasking

UNICOS 6.0 employs a software semaphore to limit the amount of time

an inactive CPU remains attached to an autotasked job. When the inactive

period exceeds a specified value, the autotasked process on the inactive

CPU reschedules itself back to the operating system, thus freeing the CPU

for useful work. This approach reduces the overhead (CPU cycles)

associated with synchronization since multiple CPUs do not remain

connected while the master executes singletasked code.

A two-way information flow between the 6.0 kernel and the autotasked

job improves process scheduling by reducing process deadlock. The kernel

allows a slave task which was executing on one CPU and interrupted to be

completed by another CPU. This procedure reduces the long periods of

waiting for a particular CPU to become free to complete its DO loop
iterations.

Neither the 5.1 nor 6.0 version of the UNICOS kernel use special

information about parallel jobs to schedule the processes. When the

master task signals for parallel work, the kernel will place that process at

the end of the ready-to-run queue. The placement of slave processes at the

bottom of the ready-to-run queue represents one type of scheduling

parallel processes in a mulfiprogramming environment; it may also be

possible to place sibling processes closer to the top of the ready-to-run

queue and thus further promote elapsed time reductions of autotasked

jobs in a workload.

1.5 An Autotasking Experiment

To test the improved performance of the 6.0 system, a synthetic workload

consisting of NAS Y-MP production codes has been run in both the 5.1 and

6.0 environments under a variety of conditions. This workload executed

on a dedicated machine and the jobs in this workload were the only jobs

in the system. The experiment employed the same machine configuration

used in NAS Y-MP production time. The following sections describe the

modelling of the NAS Y-MP workload, the results of model workload

executions on the 5.1 and 6.0 versions of the UNICOS operating systems, a
discussion of these results, and some conclusions.

7

2.0 Modelling NAS Y-MP Workload

The workload, that is, the set of programs submitted for execution,

strongly affects the vector performance of supercomputers. The workload

will influence the parallel performance of supercomputers even more

strongly because parallel versions of typical application codes display a

wider range of performance than vector versions. The workload

performance of supercomputers executing a set of mixed (single and

parallel) programs will also depend upon workload idle time. Such idle

reflects administratively set operating system parameters. This section

presents the salient features of the NAS Y-MP/8128 workload as it existed
in 1990.

Hardware Performance Monitor (HPM) measurements of the NAS

workload performance indicates performance rates of about 90 MFLOPS

(Million Floating Point Operations Per Second) per processor (Bergeron,
1990).

Significant idle can occur in off-prime time, defined as evenings and

weekends when batch queue submittals dominate execution time. Off-

prime batch parameters impose a limit of 12 jobs in execution with a

maximum single job size of 64 Megawords (MW). NAS operating system

parameters encourage any job equal to or exceeding 16 MW to remain in

core until completion. Deferred (low-charge-rate) queues reduce off-prime

idle by executing during off-prime periods of high idle.

Examination of the accounting records for a typical weekend provided

the following distribution of CPU time as a function of memory size.

NAS Y-MP Weekend Workload Memory Use

i40000

120000-

100000-
(/)

"10

o 80000-
O

_a 60000
O.

0 40000-_.-

0

'1 lllll _1_ ,,,I,,,,I ,,,,I,,,,I,,,,I,, ,,I,=,,I,, ,,

-]_

' ' ' I ' ' ' ' I

10 20

..n,.,O.
30 40

Memory(MW)

5O

8

The Cray System Activity Report provided an idle history for the same
weekend as shown below.

NAS Y-MP Weekend Idle History

o° 400

°o 300

Q

200

==
O

>o 100

=.

:= 0
O ! !

0 1000 2000

(Elapsed Time In Seconds)/lO0

3000

The slope of the figure is about I idle second per 8 elapsed seconds for the
weekend shown.

A local utility provided the size of executables swapped to disk for the

typical weekend as is shown in the following figure.

NAS Y-MP Weekend Workload Swap History

6O

5O

40

MW swapped

30

2O

10

i " I " !

0 200 400

Number

U
• ! • ! •

600 800

of 5-minute Interval

1000

9

A typical weekend has an average of 10 MW swapped to disk and since

the first 32 MW of the SSD serves as cache for the swap disk, the swapping

I/O takes place at SSD speeds. The oscillations shown in the figure are due

to UNICOS time-slicing round-robin scheduling.

The accounting records indicate typical NAS weekend workloads

perform with little I/O and little I/O lock time. These records also show

that the workload is about 99% singletasked and that the average parallel

job is about 10 MW.

The previous remarks indicate that a suite modelling the NAS workload
should :

• display a system flop rate averaging 90 MFLOPS,

• show about 12% idle throughout the workload execution,

• display an average 10 MW swapped throughout workload

execution,

• consist of 12 jobs executing in batch mode, and

• contain singletasked jobs.

The second and third criteria are related because swapping induced by

memory oversubscription can produce CPU idle. Maintenance of a

constant swap burden would require a workload involving constant

resubmittal of jobs. This approach would, in turn, require a more

involved measurement of autotasking performance than elapsed time

reduction. Since memory oversubscription produces idle for usage by

autotasking, the stronger modelling criterion for these 12 job workloads

requires the idle growth rate in the synthetic workload to match that of the

NAS Y-MP workload, 1 idle second per 8 elapsed seconds. This latter

requirement was adopted and no attempt was made to ensure that the

model workloads averaged 10 MW of swap.

To represent autotasking favorably, some of these codes must perform

reasonably well on multiple CPUs. Table 1 describes a suite constructed to
be consistent with these constraints.

10

Table 1. Model Workload

Code CPU Size Rate FLOPS Comments

(Sec) (MW) (MFLOPS) ! %

C01 595 59 222 11.5 Autotasked

C02 625 55 164 8.9

C03

C04

602

601

10 161

187

8.4

9.8

Sin_letasked

Sin_letasked
Autotasked

C05 601 8 187 9.8 Autotasked

C06 601 8 187 9.8 Autotasked

C07 617 5 165 8.8

C08 603 7 133 7.0

C09 143 1 122 6.1

122C10 8.0125

Cll 82 1 131 6.6

C12 605 2 105 5.3

Sin_letasked

Sin_letasked

Singletasked,

4 copies serially

Singletasked,

5 copies serially
Autotasked,

7 copies serially

Singletasked,

SSD sync I/O

The column labelled "FLOPS" denotes the percent of workload floating

point operations provided by each code. Consistent with Figure 1, small

memory codes make the dominant contribution to the total workload
FLOPS.

All codes provide solutions to partial differential equations with the

majority involving CFD problems; all codes except C01 and C12 are NAS

production codes. Selection of code input parameters attempted to provide
about 600 CPU seconds for each code. The table shows that codes C09, C10,

and Cll achieve about 600 CPU seconds by resubmittal; in practice, entry of

jobs into the batch stream would be a common occurrence.

The total number of floating point operations for this workload is about

1101 billion. The following procedure estimates workload performance:

• Let the first group consist of 8 jobs, one for each CPU, and one of
which is C02.

• Let the second group consist of the remaining 4 jobs, one of which is
C07.

• Assume that the second group does not start until the first group
finishes.

• Assume that the elapsed time for the first group is the CPU time of

the longest job, i.e., 625 seconds.

• Assume that the elapsed time for the second group is the CPU time

of the longest job, i.e., 617 seconds.

11

This procedure gives an elapsed time estimate of 1242 seconds and a

system performance rate of 89 MFLOPS per CPU. This estimate neglects

system time and efficient scheduling of jobs by the operating system, but it

does indicate that the model workload has the potential for agreement
with the desired NAS Y-MP rate.

Although the above workload memory requirement is 166 MW, the

swapping burden will decrease linearly as the jobs complete and prevent

satisfaction of the constant 10 MW swap criterion.

Table 2 shows dedicated 8-CPU speedups and effidencies demonstrated by

the codes designated as autotasked in Table 1 (C03 is included in Table 2
because an autotasked version of this code is used in Section 3.1.2.).

Table 2. Performance of Autotasked Codes in Dedicated Time

UNICOS

CODE

C01

C03

C04

C05

C06

Cll

I
Speedup

7.67

6.0

Efficiency

.959

3.75 .469

3.49 .436

3.49

3.49

3.12

.436

.436

.390

Speedup
7.74

4.49

5.54

5.54

5.54

3.90

5.1

Efficiency

.968

.561

.693

.693

.693

.488

The autotasking preprocessor, in modifying the FORTRAN source for

codes C03, C04, C05, and C06, required special directives to implement in-

lining of certain subroutines. The major emphasis in this report was on

understanding the workload performance, and additional autotasking

effort would have certainly improved the speedups for the autotasked

codes. C01 is an exception to this claim since this code already displays a

very good speedup. The workload initially contained an autotasked

version of C03, but revisions to the autotasker created execution problems

for this code. Most of the results quoted in the next chapter include only

five autotasked jobs; Section 3.1.2 provides results for a workload with an
autotasked version of C03.

A comparison of dedicated performance, as shown in the table, indicates

speedup and efficiency penalties for UNICOS 6.0. These reductions reflect

the voluntary rescheduling of the CPUs back to the operating system. This

feature improves the performance of workloads containing autotasked

jobs, but degrades the performance of autotasked jobs in dedicated time.

UNICOS 6.0 provides a path for obtaining the 5.1 parallel efficiency with

the hardware semaphore, but Cray does not recommend this path for

workloads since it degrades workload performance.

Achievement of workload performance gains in dedicated time slots

required some revision of the modelling details. Initial UNICOS 5.1

executions of a slightly different workload with no memory

12

oversubscription displayed no autotasking gains. This experience seemed

to indicate that autotasking gains required the additional idle generated by

the memory oversubscription shown in Table 1. Increasing memory

requirements to produce additional idle prevented satisfaction of the 12%
idle criterion.

Moreover, initial experience with the NAS scheduling parameters in

dedicated time indicated limited swapping for the oversubscribed

workload. The scheduler would force execution of one of the two large

jobs while keeping the other large job on the swap disk until sufficient

memory allowed a swap-in. The NAS scheduling parameters seemed to

limit the swapping-induced idle and consequently, autotasking

performance gains. Production of idle time in the model workload thus

required the creation of a set of scheduling parameters to distribute time

slices to large memory jobs on the same basis as the smaller jobs. These

"high swap" parameters promoted swapping on a timely basis and created

the idle thought necessary for autotasking performance gains. Appendix A

provides a comparison of the scheduling parameters used in this analysis.

During execution, background UNIX scripts monitored system idle,

workload CPU, memory on the swap disk, and overall system activity.

13

3.0 Results

This section presents three examples demonstrating the reduction in

workload elapsed time under autotasking. The first example (Section 3.1)

involves a comparison between UNICOS 6.0 and 5.1 autotasked

performance. The second example (Section 3.2) shows the effect of 6.0

scheduler parameters on autotasking performance. Appendix A discusses

the UNICOS operating system parameters in more detail. A third example

(Section 3.3) provides the performance improvement obtained by

maintaining a single job in autotasked mode to utilize idle CPU cycles.

The final section presents some discussion of the role of the operating

system in supporting autotasking.

3.1 A Comparison of UNICOS 5.1 and 6.0 Performance

These workloads executed in a dedicated environment to provide a

controlled investigation of autotasking-generated throughput

improvements. Since the workload consisted of a fixed number of jobs, a

throughput improvement would correspond to a reduction in elapsed
time.

Execution began by invoking a UNIX script which recorded the date,

initiated 12 background scripts, paused until all 12 background scripts had

completed, and then recorded the completion date. Each of the 12

background scripts initiated execution of a workload job and requested

accounting information for the job. Accounting logs provide a wealth of

job execution data including elapsed time, CPU time, system time and idle

(semaphore wait) time. Executables in the singletasked workload

corresponded to singletasked versions of the programs described in
Section 2.1. The autotasked workload substituted autotasked executables

corresponding to the 5 autotasked programs.

A monitoring script executed every 30 seconds to record a history of the

CPU time accumulated by the programs in the workload. The script also

provided a snapshot of main memory, swapping information, and system
counters.

3.1.1 UNICOS 5.1 Off-Prime Workloads

This section discusses the performance of 5.1 workloads executing with

operating system parameters used to administer the NAS off-prime

workloads. These off-prime parameters generate a low-swapping, low-idle

environment by encouraging the completion of all jobs exceeding 16 MW

and by promoting the execution of CPU-intensive jobs. Under the 5.1

system, NAS employed 4 CPUs per process as the default value. The

experiments include 5.1 measurements for 4-CPU and 8-CPU workloads to

14

allow comparison with the 6.0 system, which employed an 8-CPU default.

The following figure shows the cumulative idle growth for the three cases
considered:

• a workload with all jobs singletasked,

• a workload with a maximum of 4 CPUs per job, and

• a workload with a maximum of 8 CPUs per job.

3000

W

= 2500

2000

Q
E

1500

1000
0

= 500
E

0

5.1 Off-Prime Workloads

, , I , I , I i

[] Singletasked

s 4-CPU Auto ,r
r'

........ 1 vv_ U I

0 500 1000 1500

Elapsed Time In Seconds

2000

The singletasked workload idle grew at about 2.5 CPU seconds per elapsed

second for the first 625 seconds. Idle grew due to CPU memory starvation

since the two large memory programs, C01 and C02, occupied the major

portion of the memory. Completion of the big jobs began a period of zero

idle growth because all jobs then fit into memory. At about 1000 seconds,

completion of several more jobs reduced the number of jobs executing to

less than 8 and the idle increased at a rapid rate until the workload

completed.

The memory starvation due to two large jobs in core is atypical since

NAS normally maintains several small jobs in core to alleviate memory

starvation. However, the workload did present a good opportunity for

autotasking to reduce idle and enhance throughput.

The 4-CPU autotasked workload displayed zero idle for the first 750

seconds of elapsed time and the 8-CPU workload displays zero idle for the

first 1200 seconds of elapsed time. However, zero idle does not mean the

CPUs perform useful work under the 5.1 system. The CPUs are merely

15

executing the semaphore wait test during much of this time. The

accounting logs indicate that about 25% of the elapsed time for the

autotasked jobs is spent in the semaphore wait.

Note that the elapsed time for each of the two autotasked workloads

exceeded that of the singletasked workload.

The following figure compares the elapsed time of individual jobs in the

5.1 system. The figure indicates the elapsed time for each code for

execution in the singletasked and autotasked workloads. Asterisks label

the autotasked codes. The figure shows that autotasking reduced elapsed

time for only two of the four autotasked codes, C04 and C05, and that all

other codes experienced elapsed time increases.

5.1 Off-Prime Workload

0
"0
0
o

1

2

3

*4

*5

*6

7

8

9

10

"11

12

r//////////////////////////A

////f/ff/ff////////////////]

////////////////////i

((((((............A
r////////d//d///////_

"/////////////////!/////////!

///////////////f///[///////]

"///////////////////////////!

i/i/////////////////J

JIF'_4r_

0 1000 2000

Elapsed Time In Seconds

[] 8-CPU Auto

Singletasked

The accounting logs show that all autotasked codes required a much larger

amount of CPU time than their singletasked counterparts. For example,

C04 required 602 CPU seconds in the singletasked workload and 1720 CPU
seconds in the autotasked workload. About 360 seconds of this extra CPU

time reflected time spent executing the semaphore wait test. The extra

CPU time required for the autotasked jobs prevented the singletasked jobs

from performing any work until the autotasked jobs completed.

16

3.1.2UNICOS 6.0Off-Prime Workloads

The following discussion presents the results for the same workload as

discussed in Section 3.1.1; however, this time the workload will be

executed under the UNICOS 6.0 operating system. Execution of this

example occurred several weeks after NAS administrators had obtained a

stable set of 6.0 scheduler parameters. Execution of all UNICOS 6.0

workloads use the 8-CPU default for autotasked jobs.

The following figure shows the growth of cumulative idle for the 6.0 Off-
Prime workloads.

"o
c:
0
o
o

(n

e

-o
m

Q.
O

3000

2500

20O0

1500

0
> 1000

_a

E
•., 500
0

0

6.0 Off-Prime Workload

Singletasked

Autotasked

0 500 1000 1500 2000

Elapsed Time In Seconds

UNICOS 6.0 singletasked idle growth displayed the same rate of increase

as the 5.1 case, about 2.5 idle seconds per elapsed second. Completion of

one large memory job at 650 seconds began a period of zero idle which

continued until the number of jobs executing decreased below the number

of CPUs at 1000 seconds. Idle growth resumed as additional jobs completed
and freed the CPUs.

The accounting logs indicated that four of the autotasked jobs had

completed at 500 seconds, thus verifying that autotasking was responsible

for the low idle growth during that time. The idle then grew because there

were only seven jobs that could fit into the available memory. Since the

job residing on the swap disk was the large memory autotasked job, C01,

this situation illustrated how an improvement in the scheduler's

17

awareness would have reduced idle. At about 1000 seconds, idle growth

paused as the final large memory autotasked job began execution. Upon

completion of the autotasked job, the idle rose again until the final job

completed.

The autotasked workload elapsed time was 1173 seconds, 4% less than

that of the singletasked workload.

The following figure compares the elapsed times for the 6.0

workloads.The figure indicates the elapsed time for each code for

execution in the singletasked and autotasked workloads. Asterisks label
the autotasked codes.

6.0 Off-Prime Elapsed Times

0
"O
0
¢.)

* 1

2

3

* 4

* 5

* 6

7

8

9

10

"11

12

///////////////////I

_((_f /////////////,

f////////////////J

"///////A

g((----fl
///////I

_//////////////'

"(((((('''''(((''"
"///////////////_

/////////////////J

"'""((I
f///////////////////A

I

0 IOO0

Elapsed Time In Seconds

2O00

[]

[]

Autotasked

Singletasked

The figure shows that autotasking reduced elapsed time for all autotasked

codes except C01. The workload oversubscribed memory and the UNICOS

scheduler elected to place C01 on swap until completion of other jobs freed

sufficient memory for C01.

As was true for the 5.1 case, autotasking alters the order of job

completion. Off-Prime parameters disable the UNICOS hog constraints so

that once the scheduler connects a process to a CPU, only a kernel or I/O

interrupt can disconnect the process. The high efficiency displayed by the

autotasked jobs indicated that the number of self-driven I/O interrupts are

small; thus these jobs finished first.

Replacement of the singletasked C03 with its autotasked counterpart

increased the number of autotasked jobs to 6. In this workload, 5

autotasked jobs finished before any of the singletasked jobs with the

18

scheduler placing C01 on swap as before. This workload required 1230

seconds, an increase of 5% over the 1173 seconds recorded for the previous

workload. The elapsed time increased because one processor was idle

during much of the execution of the remaining 7 jobs.

3.2 UNICOS 6.0 Autotasking and Scheduler Effects

This section shows elapsed time and idle for 6.0 cases involving High

Swap and Prime NAS scheduler parameters. UNICOS allows modification

of its scheduling parameters via an interactive command. Time

constraints prevented execution of these cases under the 5.1 version of
UNICOS.

3.2.1 UNICOS 6.0 High Swap Scheduling Parameters

The High Swap parameters assign an equal priority to all jobs in the

workload. Since the workload oversubscribed memory, this assignment

promoted the swapping of executables to disk. Examination of system logs

indicated that the scheduler gave all jobs an approximately equal timeslice.

"u
t-
O
o
@

_o

Q.
O

O

i

E

o

6.0 High Swap Workload

6000 I I I I I I I I

5000 -_ "_a_- Singletasked /

4000

3O00

2O00

1000

0 I J

0 500 1000 1500

Elapsed Time in Seconds

2000

The above figure shows the growth of cumulative idle for the High Swap

workloads. For the singletasked workload, idle time grows at a rate of

19

about 3.25 idle seconds per elapsed second until about 1400 seconds. At this

time, there are only 8 jobs executing in the system and idle grows much

faster as completion of each of the remaining jobs idles a CPU.

For the autotasked workload, idle time grows linearly for about 100

seconds and then grows at a much slower rate until about 750 seconds.

Examination of the system logs for the first 100 seconds indicated that the

system had created all of the autotasked slave processes; after this time

autotasking was able to use idle seconds created by the swapping.

Completion of all 5 autotasked jobs at 725 seconds initiated a slow and

then rapid increase in idle as the CPUs became free.

Autotasking reduced the elapsed time from 1600 seconds to 1296 seconds,
a reduction of 19%.

The following figure compares the elapsed time of individual jobs in the

5.1 system. The figure indicates the elapsed time for each code for

execution in the singletasked and autotasked workloads. Asterisks denote

the autotasked jobs.

6.0 High Swap Elapsed Times

0
¢J

* 1

2

3

* 4

* 5

6

7

8

9

10

11

12

2000

Autotasked

• Singletasked

The figure shows that autotasking reduced the elapsed time for all jobs,

single and autotasked, in the High Swap workload. This result is an

example of autotasking providing a clear improvement for workloads

with sustained swapping.

20

3.2.2 UNICOS 6.0 Prime Scheduling Parameters

The second case displaying scheduler effects involves execution of the 12-

job workload under NAS prime-time scheduler parameters. These

parameters provide a low-idle environment while supporting a strong

interactive component. The parameters enforce restrictions on large

memory and large CPU jobs. This case addresses the ability of a scheduler

devoted to rapid turnaround of small jobs to provide effective autotasking
performance.

5000

w

= 4000

Q

3000

o 2000
o

E 1000

o

0

6.0 Prime Workload

, I , I , I

----"=--'- Singletasked /

I II I I

0 500 1000 1500

Elapsed Time In Seconds

2000

The above figure shows an 850 second period of zero idle for the

singletasked workload. The scheduler allowed 11 of the 12 codes to fit in

the memory while holding back the 55 MW job, C02. The completion of

these jobs in 850 seconds led to an increase in the idle due to an

insufficient number of jobs to keep the CPUs busy.

The autotasked workload saw the four smaller autotasked jobs dominate

the first 500 seconds of execution. The remaining 8 jobs, including the

large memory autotasked job C01 on swap, oversubscribe memory.

However, the scheduler had no knowledge that it had swapped a parallel

job and C01 remained on swap until the singletasked large job completed.

Autotasking reduced the elapsed time from 1463 seconds to 1231 seconds,
a reduction of 16%.

The following figure compares the elapsed time of individual jobs in

the 6.0 system. The figure indicates the elapsed time for each code for

21

execution in the singletasked and autotasked workloads. Asterisks denote

the autotasked jobs.

6.0 Prime Elapsed Times

• t

"o
o
0

* 1

2

3

* 4

* 5

6

7

8

9

10

11

12

{///////////////J

//////////!

_/////////A

J

rJ IP'_

"II/IIIIIIII/IIIIIIII/I

• I

0 1000

Elapsed Time In Seconds

2000

[] Autotasked

Singletasked

The figure indicates that the small memory autotasked jobs, C04, C05,

C06, and C011, experience improved turnaround under the prime

scheduler parameters. This improvement is obtained at the expense of

five of the singletasked jobs.

3.3 UNICOS 6.0 Continuous Autotasking

Typical supercomputer workloads keep their processors continuously

busy as opposed to the 1200-second model workload treated in the

preceding sections. A supercomputer installation might average a single

autotasked job in its workload, either by design or by user choice. This

section addresses the performance gains observed by autotasking a single

job continuously in the 12 job workload. In this case, the autotasked job is

the efficient 8 MW C06 code described in the workload modelling section

and the Off-Prime parameters provide the workload scheduling. To

continuously resubmit the C06 code, the C06 script was modified to invoke

a loop containing the C06 executable. This script continued to execute until

all other programs had completed.

Autotasking large memory jobs might reduce idle more effectively, but

NAS autotasking programs tend to average around 10 MW. NAS users

22

with large memory requirements tend to store their arrays on SSD to

increase their turnaround (Bergeron, 1990).

6.0 Continuous Autotasking w/ Off-Prime

Scheduling

3000

¢ 2500
o
o
Q

= 2000

!

-- 1500

O

• 1000
>

E 500

0

0

0 2000

= I i I = I i

"---'=---- Singletasked ii /

I I I

500 1000 1500

Elapsed Time In Seconds

The above figure shows a three stage idle growth for the autotasked

workload with an initial growth interval dominated by a singletasked job

in memory, a period of zero growth corresponding to the completion of

one big job, and an increase beyond 1300 seconds when the 59 MW

autotasked job dominates execution. The rate of idle growth in the initial

stage is about 1.3 idle seconds per elapsed second; Section 3.1.2 indicated

the singletasked idle growth rate for this workload to be about 2.5 idle

seconds per elapsed second. CPU memory starvation was responsible for

the idle growth in the singletasked workload; autotasking a single job

reduced the idle growth rate by a factor of 2. The high idle occurring at the

end of elapsed time is an artifact of the 6.0 tendency for the slave processes

to relinquish their CPUs. Autotasking a single job in an actual (many job)

workload environment should prove more effective in limiting idle

growth.

The total number of FLOPS for this workload was 1545 billion and

workload elapsed time was 1664 seconds. The system performance rate for

this case is 0.928 GFLOPS, an increase of 3% over singletasked throughput.

The next figure compares each job's elapsed time in the singletasked

workload with those in the continuous autotasking workload.

23

e

o
o

6.0 Continuous Autotasking w/ Off-Prime
Scheduling

1

2

3

4

5

6

7

8

9

10

11

12 m wm._l

w T

0 1000 2000

Elapsed Time In Seconds

[] Autotasked

Singletasked

All but one job required more elapsed time in the autotasked workload,

with elapsed time increases ranging from 2 to 120%. The very large

increases in elapsed time were due to the Off-Prime tendency to keep jobs

executing until completion.

This example employed an efficient job to utilize the idle, but not all

autotasked jobs are efficient; in fact, workload throughput could decrease if

the autotasked jobs represent low performance code (Bergeron, 1990).

3.4 UNICOS 6.0 System Effects

All autotasked workloads experience significant increases in system time

due to the increased managerial burden placed upon the kernel in

servicing the autotasked jobs. This section describes how UNICOS 6.0

improvements have reduced two aspects of this burden, deadlock

interrupts and context switches.

Section 1.2 indicated that deadlock interrupts occur when the operating

system must intercede in the normal process scheduling procedure

because all autotasked processes associated with a given job wait on a

semaphore. In a workload context, deadlock interrupt occurs because the

kernel has preempted a CPU which was part of a multitasking group.

The 5.1 version of UNICOS allowed slave processes to keep their CPUs

whenever the master task performed singletasked work. During such

periods, these idle CPUs executed the semaphore wait test until the master

24

task called for additional CPUs. Thus, CPUs were busy during a 5.1

autotasked job and the probability of kernel preemption of a CPU was

high. Such preemptions would lead to a large number of deadlocks.

The 6.0 version of UNICOS required fewer interrupts because idle slave

processes returned their CPUs to the operating system and went to sleep.

The following figure compares the cumulative number of deadlock

interrupts for the two UNICOS versions executing the sample workload

with the Off-Prime scheduling parameters.

2

m

o
O

n

"o

o
a

O

.Q
E

Z

O

m

ca
u

E

o

Deadlock Interrupts for Autotasked

Workloads w/ Off-Prime Scheduling

500000 , I ,

400000
300000 5.1

6.0

200000

100000

0 1" !

0 1000 2000

Elapsed Tlme In Seconds

The figure shows a reduction of almost 500,000 in the number of

deadlock interrupts for the two workloads. Time spent processing

deadlock interrupts is not recorded directly in the system call history, so it

difficult to know whether this time exceeds the semaphore wait time.

One system effect which is recorded in the system traces is the context

switch rate. UNICOS requires CPU time (charged as the increased system

time) to transfer execution from one process to another. The process

switch rate provides the exchange sequence rate, i.e., how often the

operating system saves a current process, disconnects it from the CPU,

arranges space for the next process and connects the new process to the

CPU. Workload joblogs indicate that system time peaks during intervals of

high context switching.

The following figure compares the process switch rate for three instances

of workload execution with Off-Prime scheduler parameters: the 6.0

25

singletasked workload, the 6.0 autotasked workload, and the 5.1 autotasked
workload.

o

O_

o_

¢-
o

O_

o_
w
Q
o
O
L,,

O.

Off-Prime Autotasking-Process Switches

10000

8000

6000

4000

2000

0

0

= I =

i 6.0 Singletas

1000

ed

d

2000

Elapsed Time in Seconds

The autotasked workloads display switch rates which are larger than

those of the singletasked workload. UNICOS 5.1 switch rates are much

higher when autotasked processes dominate execution The high 5.1 rates

are another manifestation of the deadlock interrupts as frequent

reschedulings require a large number of context switches. In the 6.0

autotasked workload, the autotasked processes reschedule themselves by

invoking the system call resch. This approach reduces kernel
involvement in the autotasked workload.

26

4.0 Discussion

These experiments indicate that autotasking a portion of a heterogeneous

workload under UNICOS 6.0 can lead to a significant performance

improvement.

The workload represented the NAS Y-MP batch workload with a small

interactive content, a small oversubscription of memory, 90 MFLOPS per

CPU, and scheduler parameters designed to promote throughput of

computationally intense jobs. Since the NAS uses the first 30 MW of SSD

as a cache for the swap disk, swapping of executables took place primarily

between the SSD and main memory. The codes comprising the

autotasking portion displayed single CPU performances exceeding 130

MFLOPS and dedicated speedups exceeding 3.

Table 3 shows workload elapsed time and its components: CPU, system

and idle for the 6.0 and 5.1 versions of the operating system. The CPU

times quoted in the table include semaphore wait time. The 6.0 1173

second elapsed time is 13% less than the 4-CPU 5.1 1352 second elapsed

time and 30% less than the 8-CPU 1727 second elapsed time. Moreover, the

data show that 6.0 autotasking provided a 4% increase in workload

throughput whereas 5.1 autotasking led to throughput decreases.

Table 3. UNICOS Off-Prime Autotasking Summaries

UNICOS Version

Scheduler

Workload

NCPUS

Elapsed. Time
CPU Time

S_,stem Time
Idle Time

System GFLOPS

6.0 5.1

Single

N/A

1219

7319

96

2337

0.903

Auto

8

1173

7891

177

1316

0.939

I
Off-Prime

Single

N/A

1241

7309

95

2572

0.887

I

Auto

8

1727

10940

1440

1436

0.637

4

1352

8003

667

2146

0.814

The CPU times for the singletasked workloads correspond to the total

CPU time required to execute the effectively twelve 600 second jobs

comprising the workload. Autotasking produced noticeable increases in

the CPU times due to the execution of the semaphore wait test by the slave

processes comprising the autotasked jobs and the time spent executing

extra autotasker-generated FORTRAN code. The above table indicates a 6%
increase for UNICOS 6.0 and a 9% increase for the 4-CPU UNICOS 5.1

executions. The 8-CPU UNICOS 5.1 execution displays a 50% increase in
CPU time.

System times for the singletasked workloads were about 7% of elapsed

time, a value similar to those previously measured for the NAS

27

workloads (Bergeron, 1990). Both versions of UNICOS produced large

increases in autotasking system time with the 5.1 system time increasing

by a factor of 7 to 14 and the 6.0 system time increasing by a factor of 2. A

very large number of deadlock interrupts, caused by the use of a hardware

semaphore to manage the parallel jobs, produced the 5.1 increases.

Previous analyses indicated that process management by hardware

semaphore gave unpredictable speedups when applied to autotasking

single jobs in a workload (Carter, 1990). Comparison of system activity for "
the 6.0 workloads with that of the 5.1 workload showed that the

autotasked workloads displayed large increases in process switch rates

relative to their singletasked counterparts. This increase is in line with the

larger number of processes present during the autotasked workloads.

UNICOS 5.1 autotasking was able to reduce the system idle for both 4-
CPU and 8-CPU cases. Reduction of idle time is an insufficient criterion for

autotasking efficiency since neither of these two cases could improve

workload throughput. The 5.1 implementation kept the autotasked slave

processes executing a semaphore wait test instead of sending them back to

the operating system to perform useful work. The 6.0 version converted a

large fraction of the idle to useful work and rescheduled unneeded CPUs

back to the system.

Table 4 shows elapsed time and idle for 6.0 cases involving High Swap

and Prime NAS scheduler parameters. Time constraints prevented
execution of these cases under the 5.1 version of UNICOS.

Table 4. UNICOS Parametric Autotasking Summaries

UNICOS Version

Scheduler

Workload

NCPUS

Elapsed Time

CPU Time

System Time
Idle Time

System GFLOPS

High Swap

Single

N/A

1600

7266

107

5427

0.688

Auto

8

1296

8036

207

2125

0.850

6.0

Prime

Single

N/A

1463

7272

57

43_

0._3

Auto

8

1231

7881

292

1675

0.894

Adjustments in the 6.0 scheduler for high swap or interactive conditions

increased the elapsed time improvements provided by autotasking. For

the high swap case, autotasking produced a 19% improvement in elapsed

time relative to its singletasked counterpart.

For the interactive scheduler parameters, autotasking led to a 16%

improvement in performance. The autotasked execution showed that

UNICOS may leave autotasked jobs on the swap disk when it might be

profitable to bring them into execution. The UNICOS scheduler has no

28

knowledge that a given job is parallel as it places the job on the run queue
for execution.

Table 5 shows that autotasking a single job continuously in the model

workload led to a 3% improvement in system GFLOPS. The 8 MW

autotasked job performed at a single CPU rate about double the workload

CPU rate and displayed a parallel processing efficiency of 44% during

dedicated runs. This performance might approximate that of a typical

production code. Autotasking purchased this performance increase at the

expense of a 15% increase in the elapsed time of the remaining

singletasked jobs in the workload.

Autotasking actually provided a somewhat larger performance increase

than the above method indicates as can be shown by considering only the

time during which other jobs are also executing. The reason for this

additional consideration arises because C03 executing alone on 8 CPUs

performs at 0.652 GFLOPS and this rate is about 30% below the workload

average. Excluding the time during which C03 performed alone in the

autotasked workload gives a 7% performance improvement due to

continuous autotasking.

Table 5. UNICOS Continuous Autotasking Summaries

UNICOS Version

Scheduler

Workload

NCPUS

Elapsed Time
CPU Time

System Time
Idle Time

Workld GFLOPS

System GFLOPS

Single

N/A

1219

7319

96

2337

1101

0.903

6.0

Off-Prime

Auto

8

1664

10235

200

2877

1545

0.928

These autotasked performance increases (4-19%) are somewhat smaller

than those reported for microtasking on an homogeneous X-MP workload

(Bieterman, 1987). The X-MP workload heavily oversubscribed both

memory and CPU by a factor of 3; moreover, the X-MP system swapped

directly to a DD-49. These factors could be the source of a much larger

amount of idle time than was produced in the current analysis; such larger

time provides the potential for large performance improvements. Finally,

microtasking provides a command for releasing idle CPUs and this

command could allow a more efficient use of idle processors.

29

5.0 Conclusions

Integration of autotasked jobs into the NAS workload must occur. While

performance considerations imply that succeeding generations of

supercomputers will contain an increasing number of processors, cost

considerations limit the rate of high speed memory growth. Jobs requiring

large amounts of high speed memory must make use of additional

processors to limit memory residence time.
A series of model workload executions has indicated that the 6.0 version

of UNICOS allowed autotasking to improve performance. Since these

workloads performed at 90 MFLOPS/CPU prior to autotasking, this

increase in performance is significant. Workload performance improved

because autotasked jobs were able to transform idle cycles into cycles

performing useful work.

The magnitude of the autotasking performance increase depended upon

the amount of idle time, the characteristics of the autotasked jobs, and the

scheduler parameters. The workload experiments contained herein

displayed throughput improvements of 4 to 19%.

The previous 5.1 version of UNICOS allowed no performance

improvement under autotasking for a variety of scheduler parameters.

The workload mix could be improved to represent the NAS workload

more faithfully. The improvements would include a greater emphasis on

SSD utilization and a better simulation of system idle. Adjusting the mix

of jobs would resolve the first difficulty. Imposing a relatively constant

idle on the workload requires a background mix of jobs which would

execute before and after the autotasked jobs executed. This approach would

provide a better approximation to the NAS production environment.

Examination of the model workload runlogs revealed that autotasked

jobs remained on the swap disk during periods when CPUs idled for lack

of memory. A modification to the UNICOS scheduler which boosted the

priority of autotasked jobs on the run queue during prolonged periods of

idle could provide performance improvement. Other improvements

including Gang scheduling of parallel processes are possible (Seager and

Stichnoth, 1989).

The scheduler improvements described above assume a supply of

parallel jobs. Although experiments indicate that an autotasked job in the

NAS 6.0 UNICOS workload enjoys a 50% reduction in elapsed time (Carter

1991), this reduction has produced a negligible amount of user parallel

processing. A stronger motivation is required to coax user autotasking.

A stronger incentive for user autotasking would arise through the

dedication of a cluster of CPUs to parallel processing. A parallel job would

have a guaranteed access to the group and the kernel could not preempt

the CPUs in this cluster. CPUs in the cluster would run singletasked jobs

in the absence of parallel jobs. Administrators could adjust the number of

CPUs in the parallel cluster. Elapsed time reduction factors of 2 and larger

could eliminate the overnight wait for a production job.

30

6.0 References

R. Bergeron (1990) "Performance Analysis of the NAS Y-MP

Workload,'NAS RND Technical Report RND 90-009.

M. Bieterman (1987), "The Impact of Microtasked Applications In A

Multiprogramming Environment," Proceedings of the Cray User Group,

October, 1987, Bologna.

R. Carter (1990), "Autotasked Performance of a NASA CFD Code," NAS

RND Technical Report RND 90-003.

R. Carter (1991), "Autotasked Performance of a NASA CFD Code in the

NASA NAS Production Environment," NAS RND Technical Report

(forthcoming).

Cray Research Inc., Cray Y-MP and Cray X-MP Multitasking Programmer's

Manual, Pub. No. SR-022E, Cray Research Inc.,1988.

R. Ciotti (1990), NAS RND, private communication.

S. Reinhardt (1985), "A Data-Flow Approach to Multitasking on CRAY X-

MP Computers," Proceedings of the Tenth ACM Symposium on Operating

System Principles, December 1985, pp 107-114.

M. Seager and J. Stichnoth, "Simulating the Scheduling of Parallel

Supercomputer Applications," UCRL-102059, Lawrence Livermore

Laboratory, Livermore, Ca., 1989.

31

Appendix A

The Off-Prime and High Swap Scheduler Parameters represent variations
on the Prime Parameters. NAS administrators derived the Prime

Parameters by examining the swap queue priorities obtained from the

system core image with UNICOS tools such as crash. NAS administrators

continue to tune these values. The parameters do not distinguish

autotasked processes from singletasked processes.

Prime Scheduling Parameters.

[-H] hog_max_mem... 107.4 MW

[-h] memhog 4.9 MW

[-c] cpuhog 90 Secs

[-f] fit_boost -2.

[-M] mfactor_in 3200.

[-T] tfactor_in -1.

I-P] pfactor_in 3.

I-N] nfactor_in 0.

[-G] in_guarantee 5.,60

[-K] constant_in 0.

[-R] thrash-inter 0.

[-C] compress_intv.. 30.

I-L] big proc 32000

[-z] smallproc 2000

I-i] intrctve prfrd 1

[-m] mfactor_out -3200.

I-t] tfactor_out 1.

[-p] pfactor_out 3.

[-n] nfactor_out 0.

[-g] out_guarantee.. 0.,10

[-k] constant_out 0.

I-B] thrash-blks 0

I-r] cpu_factor 24
I-Z] itime 5

I-x] max_outage 0

32

Off-Prime Scheduling Parameters

The major change to the Prime Parameters is the removal of restrictions

on the memory and cpu. Setting H, h, and c to 0 achieves this. Also

interactive processes no longer enjoy preferred status.

[-HI hog_max_mem... 0.0 MW

I-hi memhog 0.0 MW

[-c] cpuhog 0.0 Secs
[-fl fit_boost -2.

I-M] mfactor_in 3200.

[-T] tfactor_in -1.

I-P] pfactor_in 1.

I-N] nfactor_in 0.

[-G] in_guarantee 0.,60

I-K] constant_in 0.

[-R] thrash-inter 0.

[-C] compress_intv.. 30.

I-L] big proc 32000

[-z] smallproc 2000

I-i] intrctve prfrd 1

I-m] mfactor_out -3200.

[-t] tfactor_out 1.

I-p] pfactor_out 1.

I-n] nfactor_out 0.

I-g] out_guarantee.. 0.,0.

[-k] constant_out 0.

[-B] thrash-blks 0

[-r] cpu_factor 24
[-Z] itime 5

[-x] max_outage 0

33

High Swap Scheduling Parameters

The High Swap parameters are obtained by removing the big proc

restriction, i.e. setting L equal to 0. This action ensured that all jobs

obtained an equivalent amount of CPU time for the 12-job workload.

[-H] hog_max_mem... 0.0 MW

I-h] memhog 0.0 MW

[-c] cpuhog 0.0 Secs
I-f] fit boost -2.

[-M] mfactor_in 0.0

[-T] tfactor_in -1.

[-P] pfactor_in 1.
I-N] nfactor in 0.

[-G] in_guarantee 0.,60
I-K] constant_in 0.

[-R] thrash-inter 0.

[-C] compress_intv.. 0.0

[-L] big proc 0

[-z] smallproc 2000

I-i] intrctve prfrd 0

[-m] mfactor out 0.0

[-t] tfactor_out 1.

[-p] pfactor_out 1.

[-n] nfactor_out 0.

[-g] out_guarantee.. 0.,0.
[-k] constant_out 0.

[-B] thrash-blks 0

[-r] cpu_factor 24
[-Z] itime 5

[-x] max_outage 0

34

